

Development of a Production-Feasible, Common Rail Fuel Injection System for Liquid Dimethyl Ether (DME) for Use in Heavy-Duty Vehicles

Subcontractor

AVL Powertrain Engineering, Inc.

Principal Investigator

Jim McCandless AVL Powertrain Engineering, Inc. 47519 Halyard Drive Plymouth, MI 48170 (313) 414-9588

DOE Project Manager

Richard Wares U.S. Department of Energy CE-332, MS 5G-086/Forrestal 1000 Independence Avenue, SW Washington, DC 20585 (202) 586-8031

NREL Technical Monitor

Warren Salt NREL 1617 Cole Boulevard Golden, CO 80401-3393 (303) 275-4422

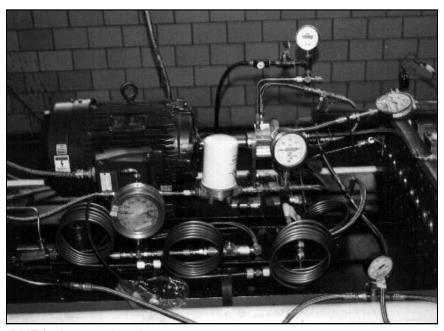
Subcontract Number

ACI-5-15107-02

Performance Period

10/95-5/97

NREL Subcontract Administrator


Kathleen Roque (303) 275-3124

Objectives

To develop a production-feasible, common rail fuel injection system for DME for use on heavy-duty vehicles; and to demonstrate diesel equivalent energy efficiency at emissions levels well below all proposed regulations. Program emissions goals are: 1.5 g/bhp-hr NO_x ; 0.05 g/bhp-hr particulates.

Approach

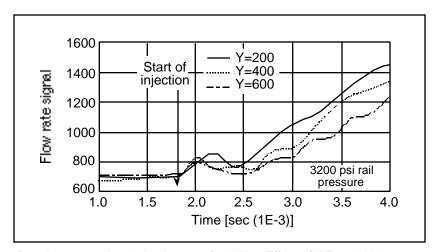
AVL Powertrain Engineering will design, simulate and produce a novel, common rail fuel injection system for DME that features electronically tunable "rate shaping".

DME fuel system bench test

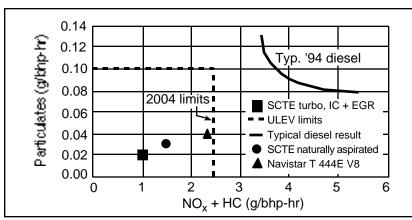
Their design will incorporate many existing production components, including an axial piston fuel supply pump, 17 mm nozzles and high performance solenoid valves. The system will be bench tested and optimized, and then installed on a Navistar DTA 530 engine for development and emissions demonstration.

Accomplishments

- The fuel injection system design and simulation work has been completed. Computer results showed that the system will perform up to expectations.
- Experimental parts have been procured, bench tested and optimized. Test results verify the computer simulations. System performance meets the program goals, and the unique "rate shaping" feature has been success fully demonstrated.
- Phase II (engine emissions demonstration) of the program is underway. Engine testing should begin in December.



Future Direction


Following successful injection system development and emissions demonstration, a field test demonstration in heavy-duty trucks will be undertaken. Details of this field test are not yet finalized.

Publications

None to date.

Bench test-results—injection rate flexibility. Effect of "Y" on initial injection rate

DME exhaust emissions